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LElTER TO THE EDITOR 

Random walks on directed percolation clusters 

T Vicsek, J KertCszt and J Cserti 
Research Institute for Technical Physics, Budapest, Pf 76,1325 Hungary 

Received 14 December 1981 

Abstract. An asymptotically exact expression is given for the mean displacement (R(r)) 
of random walks on directed percolation clusters on lattices in arbitrary dimensions. The 
critical behaviour of R, = lim,+,(R(t)), the mean squared displacement and the relaxation 
time is discussed near the threshold probability pc  = 1 in terms of critical exponents. 

Many versions of the percolation problem have been studied since the classical work 
of Broadbent and Hammersley (1957). Recently more attention has been focused on 
developing sophisticated models which may meet theoretical interest as well as possible 
applications in various fields (for references see Stauffer (1979) and Essam (1980)). 

In the case of directed percolation the bonds transmit only in one direction. This 
direction can be specified in a number of ways: the most common model is obtained 
when a bond is directed like a unit vector parallel to it and having positive projection 
on a fixed vector, playing the role of an external field. Thus on the square lattices 
the bonds are directed downward or to the right (see figure 1). This model is in a 
different universality class from ordinary percolation (Blease 1977a, b, KertCsz and 
Vicsek 1980, Obukhov 1980, Kinzel and Yeomans 1981) and has relevance to 

Figure 1. Part of the directed square lattice. All bonds 
a2. The distance travelled by a particle starting from the 
mo after k = ko steps is marked by a broken line. 

are directed like bonds al  and 
origin and arriving at the point 
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phenomena occurring in various systems, such as hopping conduction in a semiconduc- 
tor (KertCsz and Vicsek 1980, Van Lien and Shklovskii 1981), Markov process with 
branching, chemical processes, absorption and recombination (Grassberger and de la 
Torre 1979). 

Random walks on ordinary percolation clusters have been investigated mainly in 
connection with diffusion in disordered lattices. Since the introduction of the problem 
called 'the ant in the labyrinth' (de Gennes 1976), a few papers have dealt with the 
description of the mean squared displacement (R2( t ) )  of the ant as a function of time. 
The main quantities of the problem, the critical exponent for the long-time limit of 
(R2( t ) )  and the associated relaxation time were obtained for site (Roussenq 1980) 
and bond (Vicsek 1981) percolation problems by Monte Carlo and in a closed form 
for the Bethe lattice (Straley 1980) and for one-dimensional bond percolation (Odagaki 
and Lax 1980). 

A natural combination of the above models is a process defined by random walks 
on directed percolation clusters, which may serve as a model for the electron hopping 
in a strong external field, when hops opposite to the field are realised with a relatively 
small probability (KertCsz and Vicsek 1980, Van Lien and Shklovskii 1981). 

In this letter we investigate the case when no hops are allowed in the direction 
opposite to the external field; of course this model is an extreme version of the process 
occurring in a real system. 

There is a correspondence between random walks on undirected percolation 
networks and the electrical conductivity of random resistor networks, since the 
diffusion constant defined from the mean squared displacement of a particle can be 
related to the conductivity of a resistor network (Mitescu and Roussenq 1976). This 
analogy, however, does not exist in the case of directed models: the conductivity of 
a random network of diodes cannot be obtained from the study of random walks; 
moreover-as will be shown later-even the critical points of the two models are 
different. 

We define the random walk of a particle on the directed lattice in the following 
way. The particle starts moving from an arbitrary site along the directed bonds 
occupied with probability p. It is allowed to make a directed move in every unit time. 
The bond through which the step is made is randomly chosen from the occupied ones 
leading away from the given site. If there are no such bonds the particle stops moving. 

Let us consider a lattice of coordination number z = 21 with I directed bonds 
leading to and out from every site ( I  = 2 for the square, I = 3 for the triangular and 
the simple cubic lattices). Furthermore we call this an I lattice. With probability 
(1 - p ) '  the particle having arrived at a site has no opportunity to proceed: it continues 
walking with probability 1 - (1 -PI'. The probability of completing k consecutive 
steps and then being blocked is (1 - p ) ' [  1 - (1 - p) ' Ik .  Therefore the mean distance of 
the particle from the origin after t steps ( t  plays the role of time) can be obtained from 

I 

( R ( t ) ) = ( l - p ) '  c g(k)rl-( l -p) ' lk+g(t)rl-( l -p) ' l"'  (1) 
k = O  

where in the case of the square lattice 

k 
g ( k )  = k C ( k ! / m ! ( k  -m)!)[1-2m/k + 2 m 2 / k 2 ] " 2 / 2 k  = kf(k) (2) 

denotes the mean distance of the k-step walk. In (1) the first sum is associated with 

m = O  
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the walks stopped not later than in the tth step, while the second term corresponds 
to the walks which go farther than the tth step. In deriving (2), we considered that 
a particle initially being at point 0 (figure 1) can reach the point mo in the koth layer 
in ko!/mo!(ko-  mo)! ways. It can be easily shown that f(k) is a slowly varying function 
and converges for k + m  to 1/h in the case of the square lattice. For example 
f(1) = 1.0, f(l0) = 0.740 and f(50) = 0.714 (1/h= 0.707), showing that the average 
trajectory of the particle is near the symmetry axis. Since we are interested in the 
long-time divergence of (R ( t ) ) ,  in the following we use 

f(k) = F = lim f(k). 
k-rm 

(3) 

It can be mentioned that with a properly chosen non-Euclidean metric the factor f(k) 
can be made unity (on the square lattice this is I x I+ \y l  instead of ( ~ ' + y ' ) ' ' ~  for the 
distance). 

Introducing w = 1 -(1 -p) ' ,  we obtain from (1) 

(4) 
W r + l  - (R ( t ) )  = (1 - w )  i g(k) w + g(t )w -F-(1 - w ') 

k =O l - w  

where only approximation (3) has been utilised. The simple formula (4) contains all 
the information we need to describe the critical behaviour of the walk. The quantities 
of interest are the long-time limit of (R (t)) 

R m  - F w / ( l -  W )  ( 5 )  
and the relaxation time 7, defined by 

(R( t ) )=Rm(l -~  e-'"). 

From equations (4)-(6) we obtain 
-1 

7 =ln( l /w)  

and Q = 1. 

can also be calculated for the directed model: 
(R( t ) )  vanishes in isotropic percolation; thus (RZ( t ) )  is used there. This quantity 

(R'(t))=F'[w(l+ w ) / ( l -  w)'][l- w t - d - l  (1 - w)l  (8) 
with a constant F'. As far as the exponents of R and T are concerned, (8) does not 
contain new information compared with (4), but the time dependence of the prefactors 
is changed. Next we are interested in the critical behaviour of R m  and 7. They diverge 
only when w + 1; therefore the critical point of the problem is pc = 1, which result 
also shows the one-dimensional character of the directed walks. From (5)-(7) one 
can see that both R m  and 7 diverge with the same exponent equal to unity if (1 - w )  
is taken as scaling parameter. 

R,=(I-w)-', (9Q) 

7 o C ( 1 -  w)-'. (9b 1 
Although this result has been derived for bond percolation on I lattices of arbitrary 
dimensional lattices, it can be shown that (9) is universally valid for site percolation 
and for arbitrary lattices too, if w is properly chosen. But, if Ap = 1 - p  is introduced 
as a scaling field the exponents are no more universal as it can be demonstrated for the 
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case of an 1 lattice: 

R,a (Ap)- ' ,  ( loa )  

T a ( A p ) - ' .  (106) 
In the problem of one-dimensional, long-range percolation (Klein er a1 1978) and 

the one-dimensional continuum percolation (Shalitin 198 l ) ,  a similar situation occurs: 
universality is valid only if appropriate scaling parameters are chosen. 

In conclusion, we obtained an explicit expression for the mean distance for the 
problem of random walks on directed lattices. The critical point of this problem is 
p c  = 1, therefore no infinite walk occurs in the system, unless all the bonds are occupied. 
Above the threshold of directed percolation (-0.64 in the square bond problem, see 
e.g. Kinzel and Yeomans (1981)) there are infinite directed paths, but if p < 1 the 
random walker will be caught with probability one in one of the dead branches. The 
directed walks belong to one universality class irrespective of the type and dimensional- 
ity of the lattice, if the scaling field is properly chosen. This universality class is 
characterised by the one-dimensional directed walk. (Note, the exponent of T is 
different in the problem of walks on one-dimensional undirected percolation clusters 
(Odagaki and Lax 1980).) 

An interesting generalisation of the model is the problem of random walks on a 
lattice in which steps against the direction of a bond are also allowed with a certain 
probability q. An unusual crossover is expected in this case since for any values of 4 
different from zero the critical concentration of bonds is equal to the undirected bond 
percolation threshold probability of the given lattice, and the p c ( q  = 0) = 1 value 'jumps' 
to the new p c ( 4  # 0) value discontinuously as a function of q. Work along these lines 
is in progress. 

The pc  = 1 value is also different from the critical point of a corresponding random 
network of diodes (Redner 1981) because a current through the diodes sets in as soon 
as a directed path appears in the network, but a randomly walking particle finds this 
path with zero probability. The diff usion-conduction analogy breaks down when 
nonlinear elements are introduced into the model, as expected. 

The authors are grateful to T Geszti for many helpful discussions and to D Stauffer 
for a critical reading of the manuscript. Thanks are due to the financial support by 
SFB 125 Aachen-Jiilich-Koln extended to one of us (JK). 

Noteadded. After submittingour letter a closely related letter (Stephen 1981) appeared, in whichageneralised 
model is studied within the framework of the effective medium approximation. Part of its results disagree with 
ours. 

Stephen M J 1981 J.  Phys. C:  Solid State Phys. 14 L1077 
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